
Build Your Own Distributed
System Using Go
GopherCon 2023
Philip O’Toole
www.philipotoole.com

Hello everyone and welcome to Build Your Own Distributed System using Go. My
name is Philip and it’s great to be here to speak with you all today.

Why Distributed Systems matter

Philip O’Toole
https://www.philipotoole.com

Before we dive into who I am and what we're doing here, let's start with a question:
Why should you care about distributed systems today?

Distributed systems are the backbone of modern computing -- especially web-scale
computer. From the databases that power our favorite applications to the real-time
analytics tools many companies rely on—distributed systems make it possible.

In a world that demands high availability, fault tolerance, and scalability of its
computer systems, us programmers, developers and computer scientists long ago
decided Distributed Systems were the answer.

Some of the software and techniques I will describe today is at the center of some of
the most popular software today, including Kubernetes and Hashicorp Consul. And
even if -- as many of you will -- decide to run someone else’s distributed system,
understanding how they are built will make you a better programmer, designer, and
operator of those very same systems.

https://www.philipotoole.com

Key takeaways

Philip O’Toole
https://www.philipotoole.com

● Understand why Distributed Systems present unique
challenges – and how the Raft consensus protocol
addresses them

● Learn to integrate Raft with different data storage
systems through practical examples

● Look at some practicalities of developing, testing, and
managing your Distributed System

First of all there will be a slide at the end of my talk with a link to this deck – that’s the
slide to take a picture of. You’ll be able to download the entire deck, and my speaker
notes, so don’t worry about taking notes (unless you really want to). I’ve also a got a
fair amount to get through today, and will try to make time for any questions at the
end. But I’ll also stay around after the presentation, and answer any questions folks
may have.

Now, let’s look at what I hope you will take away from today’s talk. We will:

My intent today is to impart practical knowledge, drawn from hands-on experience, to
assist you in constructing your own distributed systems.

https://www.philipotoole.com

About me

Philip O’Toole
https://www.philipotoole.com

rqlite.io
The lightweight, distributed relational

database built on Raft and SQLite

I am Philip, a software engineer with a focus on Go and distributed databases.

I am the creator rqlite, a lightweight distributed relational database built on Raft and
SQLite.

I also spent two years as part of the core team at InfluxDB, a distributed time-series
database that also leverages Raft. Currently, I work at Google, managing
development teams working on large-scale logging systems for Google Cloud
Platform. And I am here today in a personal capacity, not as representative of
Google, nor any other company.

https://www.philipotoole.com

Why Distributed
Systems are hard

Why are Distributed Systems difficult?

There really is only one hard problem in distributed systems.

And to gain an understanding of what we’re going to build today, it’s important
to gain an intuitive understanding of what problem we actually have to solve.

Why Distributed Systems are hard

Philip O’Toole
https://www.philipotoole.com

Client X=5SET X=5

Let’s say you want to set a piece data to a particular value. For example it could be a
row in a database table. It could be the password for a user. It could -- every simpler
-- be a value for key in a key-value store.

That’s easy, we all know how to do it. Make the call to your system -- in the example
above, let’s set X to 5.

But what if the data you're setting is really valuable? What if it’s mission critical, and
you need multiple copies of that data, in separate places? What if you need that data
to be always available for retrieval by others, even in the face of failure? Then we
need to make copies -- we need to replicate the data.

https://www.philipotoole.com

Why Distributed Systems are hard

Philip O’Toole
https://www.philipotoole.com

Client X=5 X=5SET X=5

Node A Node B

SET X=5

So let’s say we build a system that makes that copy in the background. Great! This
solves the problem -- or at least, appears to.

But what happens if Node B doesn’t respond? Should Node A respond OK to the
client? Should it respond with an error? What if Node B got the update, but the
connection between the nodes failed before Node B could acknowledge the copy?
See? It starts to get complicated.

https://www.philipotoole.com

Why Distributed Systems are hard

Philip O’Toole
https://www.philipotoole.com

Client X=5

This failure is known as a partition.

Node A Node B

SET X=5

In other words, what should happen if this system suffers from a partition?

https://www.philipotoole.com

Why Distributed Systems are hard

Client

X=5

X=5

Node A

Node B

Philip O’Toole
https://www.philipotoole.com

Client replication: multi-node system - each node must
support changing state

OK, so say you decide to try a different approach.

Another idea is to push the responsibility to the client.

So now the client is responsible for replicating the data.

This means more work for the client, but does give the client maximum flexibility --
and information about what has happened at each stage.

But there is a subtlety introduced here -- unlike the first system each node in a cluster
must be able to receive updates from the client.

https://www.philipotoole.com

Why Distributed Systems are hard

Philip O’Toole
https://www.philipotoole.com

Client 1 X=6

X=5

Client replication: multi-node system - each node must
support changing state

Client 2

SET X=6

SET X=5

Node A

Node B

And if each node can accept updates, then you must solve the problem that can occur
if conflicting updates are received by different nodes! And if there is a partition, what
the system will do is even harder to control.

Because what happens after this, if there is a read?

https://www.philipotoole.com

Why Distributed Systems are hard

Client

X=6

X=5

What value should be returned for X?

READ X

Node A

Node B
X = ?

Philip O’Toole
https://www.philipotoole.com

And when the cluster is repaired, what is the resolution mechanism?

Now there are solutions to these issues, but my point is to show there is a real
problem here, and solving this apparent simple request -- replicate my data
reliably, consistently, and quickly -- is actually harder to solve than you might realise.

https://www.philipotoole.com

Why Distributed Systems are hard

Philip O’Toole
https://www.philipotoole.com

This problem is known as

Distributed Consensus.

This problem is known as Distributed Consensus. Decades of computer science
research have gone into solving it.

And we have solved it.

https://www.philipotoole.com

Introducing Raft

Philip O’Toole
https://www.philipotoole.com

Raft is a protocol for solving the

Distributed Consensus problem

What is Raft?

Raft appeared in 2014 and was created bvy Diego Ongaro and John Ousterhout at
Stanford. One of it main goals was to create a protocol that was relatively easy to
understand.

https://www.philipotoole.com
https://twitter.com/ongardie
https://www.stanford.edu/~ouster/

Core Raft concepts

Philip O’Toole
https://www.philipotoole.com

1 X=5

2 X=3

3 X=1

1 X=5

2 X=3

3 X=1

1 X=5

2 X=3

3 X=1

An agreed upon sequence of
events, on every node - the
Raft log.

Raft defines Snapshotting --
how we ensure the Raft Log
doesn’t grow without bound

By definition, every node in a Raft cluster agrees on the events, and sequence of
those events, in what is call ed Raft Log.

In fact, the Raft consensus protocol is specifically about ensuring that the log is the
same on every node. All other functionality, flows from this fact. Raft has nothing to
say about what is done with that log. What we will actually to is apply those events --
in sequence -- to our storage system.

Raft also defines a process known as Snapshotting? What is Snapshotting? Well it
will help if you first understand what problem Snapshotting is designed to solve.

If you think about it, if the Raft Log contains every single event since the beginning of
time (so to speak) than what is to prevent the Raft log from growing without bound?
That is where Snapshotting comes in. Every so often the Raft system will ask your
code to provide a snapshot – and encapsulation of the entire state of of your storage
system – and then it will remove from the log all entries which are represented in that
state machine. That is how we avoid having the log grow without bound.

https://www.philipotoole.com

Core Raft concepts

Philip O’Toole
https://www.philipotoole.com

Heartbeating between
nodes to detect failureLeader nodes - and process

for selecting that Leader.

Raft also defines the Leader election protocol, which ensures there is always one,
and only one, Leader. It is the Leader which is responsible for coordinating changes
to the log on each node. Nodes which are not the Leader are called Followers.

Raft also defines how to detect if a node fails, via a mechanism called “Heartbeating”.

https://www.philipotoole.com

What Raft solves – and how

Philip O’Toole
https://www.philipotoole.com

Concurrent updates Consistency Fault Tolerance

● Only the Leader

can make

changes

● Raft log is key

● No “eventually

consistent”

results

● Only a quorum

need agree

● Failure-detectio

n via

Heartbeating

● Leader Election

Let’s take a closer look at how each of these characteristics address the hard problem
of Distributed System.s

Concurrent updates
Consistency
Fault tolerance

In summary Raft provides a solution for the distributed consensus problem,
abstracting away the details, allowing programmers like us to choose the state to be
agreed on by those nodes.

I’m not going into the details on how Raft does all this, but it’s conceptually rather
simple and I have links to resources at the end of my talk. What I want to focus on is
how you can take this primitive and apply it to your storage system.

https://www.philipotoole.com

Let’s build

Now that we’ve established why you need Raft, let’s look at the practicalities of
building a system that uses it.

Let’s walk through the conversion of a simple key-value to a distributed version. Many
talks showing how to use Raft take a bottom-up approach, showing Raft code from
the start, and explaining how it works. I’m going to take a different approach – instead
I want you to develop an intuitive sense for what is going on with the system, where
Raft as a building block fits in, and show you the key code changes you make to
change a simple key-value store into a distributed version.

Naive Distributed Key-Value store

Client

Philip O’Toole
https://www.philipotoole.com

All KV
statements

HTTP HTTP HTTP

KV KV KV

Let’s look a the system diagram for a simple key-value store, one where the client
attempts to do its own replication. Of course, this system suffers from all the problem
we outlined earlier. For example it’s not clear what the client should do if some KV
stores don’t respond, or how the system should operate if multiple clients are writing
to the KV stores simultaneously.

Let’s next take a look at very simple Go code, which implements one of these KV
store nodes.

https://www.philipotoole.com

Naive Distributed Key-Value store

Philip O’Toole
https://www.philipotoole.com

// KVService is a KV store which responds to HTTP requests
type KVService {
 kv map[string]string
}

func (s *KVService) SetKey(w http.ResponseWriter, r *http.Request) {
 buf := io.ReadAll(r.Body) // Read the request body

 m := map[string]string{} // Actually set values in KV store
 json.Unmarshal(buf, &m)
 for k, v := range m {
 s.kv[k]= v
 }
}

curl -XPOST localhost:8080/key -d '{"user1": "batman"}'

Now let’s show how adding Raft to our naive distributed KV store changes the system
design.

https://www.philipotoole.com

Raft-based Key-Value store - conceptual view
Client

1 to N nodes
(N/2)+1 is quorum

Philip O’Toole
https://www.philipotoole.com

All KV SET
operations

Only those KV SET operations that make it
through consensus!

Raft Consensus Protocol

OK or Error

HTTP

KV KV KV

Conceptually, this is is what we’re going to do. Now it’s important to understand that I
don’t consider this a system architecture diagram. Instead this is a conceptual
diagram, showing what is actually happening in the distributed KV store we’re about
to build. It is important to note that this system is full replicated. A full copy of the KV
data lives on every node. This is a distributed system -- it is replicating for high
availability and fault tolerance, but not for write performance.

Clients now write to a Raft “black box”. This black box accepts operations – mutations
if you will – and takes care of pushing them out to the cluster. It tracks which nodes
have received the changes, if quorum has been met, and anything else that needs to
happen to ensure the change is safely replicated. Only when all this has happened
does it respond back to the client. From the client’s point-of-view, nothing has
changed – except it’s much simpler to work with the KV store!

So how do we go about actually adding this Raft building block to our KV store? Let’s
start by introducing one of the best open-source Raft Go implementations out there –
Hashicorp’s Raft library.

https://www.philipotoole.com

Choosing a Raft Consensus Library

HashiCorp Raft
Mature implementation in Go

Powers Consul and Nomad

Good documentation

Customizable

MIT Licensed*

Philip O’Toole
https://www.philipotoole.com

● Available on GitHub at https://github.com/hashicorp/raft
● *Version 1.5 is MIT licensed, though future versions are subject to change. It’s

important to note this because Hashicorp recently changed the licensing for
their *products*, but not for libraries such as the Raft library.

https://www.philipotoole.com
https://github.com/hashicorp/raft

// KVService is a distributed Key-Value store which uses Raft
type KVService {
 kv map[string]string // Each Service still has a KV store
 consensus *raft.Raft // Each Service now has a Raft module too!
}

// SetKey sets the value of key via Raft Distributed Consensus
func (s *KVService) SetKey(w http.ResponseWriter, r *http.Request) {
 buf := io.ReadAll(r.Body) // Read the request body
 m := map[string]string{}
 json.Unmarshal(buf, &m)
 for k, v := range m {
 s.kv[k]= v
 }
 future := s.consensus.Apply(buf, 5 * time.Second) // Call Raft!
 if future.Error() != nil {
 w.WriteHeader(http.StatusServiceUnavailable)
 }
}

Building a Raft-based Key-Value store

Philip O’Toole
https://www.philipotoole.com

https://www.philipotoole.com

Building a Raft-based Key-Value store

Philip O’Toole
https://www.philipotoole.com

// Apply changes the KV store - called on each node only if consensus reached!
func (s *KVService) Apply(*raft.Log) interface{} {
 m := map[string]string{}
 json.Unmarshal(log.Data, &m)
 for k, v := range m {
 s.kv[k]= v
 }
}

// NewKVService instantiates the distributed KV store
func NewKVService() *KVService {
 kv := &KVService{}
 kv.consensus = raft.NewRaft(raft.Network(“localhost:10000”), (raft.FSM)(kv),...)
 return kv
}

https://www.philipotoole.com

Introducing hraftd

Client
SET Key Leader Follower

Follower

Philip O’Toole
https://www.philipotoole.com

KV

KV

KV

Apply(l *raft.Log)

Now here is the system architecture of the distributed KV store. This system exists
today – I built it, and it’s called hraftd. It’s available on GitHub. The client sends its
requests to the Leader.

Let’s look at the key parts:

● Each node runs the Raft consensus code
● Once consensus is reached for any operation sent to the Leader, actual KV

updates are then – and only then – applied by each node to its local KV
store. In coding terms the Apply() function you implement will be called.

● Which node is the Leader can change at anytime -- perhaps due to failure or a
network fault.

● The Raft system will take care of this, ensuring a new Leader is elected within
a few seconds.

● By the way this KV store is a CP system, in terms of the CAP Theorem. In the
face of a network partition (the “P” in the CAP Theorem), one side of the
cluster will continue to offer consistent reads and writes, whereas the other
side of the cluster will be unavailable.

● In other words, the KV store provides consistency instead of availability.

https://www.philipotoole.com
https://en.wikipedia.org/wiki/CAP_theorem

Integrating with the Raft consensus module involves implementing five key

functions – the Raft.FSM interface.

 Apply(l *raft.Log) interface{} // Apply a committed entry to a node’s KV instance

 Snapshot() (raft.FSMSnapshot, error) // Returns a snapshot of a node’s KV store

 Persist(sink raft.SnapshotSink) // Write snapshot to persistent storage

 Restore(rc io.ReadCloser) error // Create a node’s KV store from snapshot

 Release() // Snapshot release. Often a no-op

Hashicorp Raft programming interface

Philip O’Toole
https://www.philipotoole.com

Encapsulates a KV operation

Wraps a full copy of our KV store

Writes KV store snapshot to disk

Transmits a previously created snapshot, for initializing a Follower

What is involved with integrating with Raft? Here is its API one must implement, which
gives you an idea of the coding involved.

https://www.philipotoole.com

Raft-based distributed BoltDB - system view

Client
SET Key Leader Follower

Follower

Philip O’Toole
https://www.philipotoole.com

To learn this lesson, let’s compare and contrast.

Now, let’s see what changes if we decide to make a distributed version of BoltDB, the
well-known KV store written by Ben Johnson, of Litestream fame. In this case the
system design stays almost the same, but the Storage system to which we apply the
events in the logs changes.

Let’s see how using BoltDB would map to code changes.

https://www.philipotoole.com

Integrating Raft with BoltDB

Philip O’Toole
https://www.philipotoole.com

// KVService is a distributed BoltDB store which uses Raft
type KVService {
 db *boltdb.DB // Each Service has a BoltDB instance
 consensus *raft.Raft // Each Service still has a Raft module
}

func (s *KVService) SetKey(w http.ResponseWriter, r *http.Request) {
 buf := io.ReadAll(r.Body) // Read the request body
 future := s.consensus.Apply(buf, 5 * time.Second) // Call Raft!
 if future.Error() != nil {
 w.WriteHeader(http.StatusServiceUnavailable)
 }
}

// Apply is the function that actually changes, everything else stays mostly the same!
func (s *KVService) Apply(*raft.Log) interface{} {
 m := map[string]string{}
 json.Unmarshal(log.Data, &m)
 b := boltDB.Tx.CreateBucketIfNotExists([]byte(“TestBucket”))
 for k, v := range m {
 b.Put([]byte(k), []byte(v))
 }
}

At a quick glance this code looks roughly the same. But look closer.

https://www.philipotoole.com

Raft-based distributed SQLite - system view

Client

SQL
Statement Leader Follower

Follower

Philip O’Toole
https://www.philipotoole.com

Let’s do the same thing with SQLite -- turning SQLite into a distributed version of
itself. Again, the system diagram looks almost the same, but this time the log will
contain SQL statements. This is basically how rqlite works.

One thing to notice is that this is statement-based replication. Understand why this
may matter to your system.

And again, let’s look at the code for this system.

https://www.philipotoole.com

Integrating Raft with SQLite

Philip O’Toole
https://www.philipotoole.com

curl -XPOST localhost:8080/db/execute -d '{"query": "CREATE TABLE foo (name TEXT)"}'

// KVService is a distributed SQLite database which uses Raft
type KVService {
 db *sql.DB // Each Service has a SQLite connection
 consensus *raft.Raft // Each Service still has a Raft module
}

func (s *KVService) Execute(w http.ResponseWriter, r *http.Request) {
 buf := io.ReadAll(r.Body) // Read the request body
 future := s.consensus.Apply(buf, 5 * time.Second) // Call Raft!
 if future.Error() != nil {
 w.WriteHeader(http.StatusServiceUnavailable)
 }
}

func (s *KVService) Apply(*raft.Log) interface{} { // Apply is the function that actually
 m := map[string]string{} // changes, everything else stays the same!
 json.Unmarshal(log.Data, &m)
 for _, v := range m {
 db.Exec(v)
 }
}

By now I hope you are seeing the pattern. Raft provides the distributed consensus
system -- the log, the leader, the failure detection, and the leader election - and you
decide what data goes into the log!

https://www.philipotoole.com

Practicalities

Let’s now talk about building and running these systems in the real world.

Testing your system
● Unit testing first and foremost

● If a component cannot be unit-tested easily,
then its interfaces may be wrong

● Most storage-level testing should take place
in unit tests

E2E
994

SLOC

Integration tests
7141 SLOC

Unit tests
10669 SLOC

rqlite source code line
count (as of v6.3.0)

● System-level testing should
focus on Raft interactions

● Integration testing
● Single and multi-node tests

● Limited end-to-end testing
● Ensures “happy path” functionality

Philip O’Toole
https://www.philipotoole.com

● Let’s say you want to build something like this. How should you think
about testing?

● Quality testing -- and specifically the ability to test – is very important for
complicated and racy systems such as we’ve discuss. Let’s take a look at the
testing approach I have found effective. I have never needed to use anything
but the standard Go unit test framework. Keep your tests clear and easy to
understand.

● Unit testing is the fundamental test approach. When it comes to unit testing, if
a component cannot be unit tested easily, it’s a strong sign that the
component’s design or interface is wrong.

● If unit testing a component requires bringing in many other components, then
it’s not focused enough on one task.

● Most store-level testing takes place at the unit test level. This works quite well
because these systems are a shared-nothing system when it comes to the
storage layer, so there is no need to test beyond a single instance of the Go
storage layer and whatever underlying technology you are storing you data in.

● Next comes system-level testing. System-level testing -- also known as
integration testing -- focuses on the Raft consensus system and how it
interacts with your storage layer.

● Functionality such as replication of commands to each node, various
read-consistency behavior, and leader election, are tested at this layer.

https://www.philipotoole.com

● Finally there is deliberately limited end-to-end testing.
● End-to-end testing launches real distributed processes, runs real clusters, and

ensures our system basically works.
● Tests should be added here sparingly because end-to-end testing can be time

consuming, and difficult to debug.
● Tests are never added here if an equivalent test can be added to one of the

other layers of testing. And if a test can only be performed in the end-to-end
suite, it’s important to determine if there’s a flaw in your system’s construction
before proceeding.

● End-to-end testing is basically a smoke-check.

● This testing philosophy adheres quite closely to the “Testing Pyramid”
philosophy, where most testing is done as close as possible to the
components themselves.

● Go has been effective when it comes to writing tests.
● For reference, rqlite v6.3.0 is about 36,000 lines of source code.

https://martinfowler.com/articles/practical-test-pyramid.html
https://martinfowler.com/articles/practical-test-pyramid.html

Accessing and managing your cluster

Philip O’Toole
https://www.philipotoole.com

Adding a
node

Reading
data

Finding the
Leader

Clients must be able to find the Leader -- the existence of the Leader must be
hidden from clients.

How can clients find the Leader? Well the first thing to remember is that every node
knows which node is the Leader -- and where it is on the network. You could use
sophisticated DNS, nodes could respond to clients telling those clients where the
leader is, or Follower nodes can transparently forward requests to the Leader.

Transparent forwarding, by the way, is what rqlite does. But all of this starts to require
substantial more coding that is present today in hraftd, the example Raft-based KV
store up on GitHub.

Adding and removing nodes requires consensus.

Kubernetes works great with Hashicorp Raft -based systems. It can help with finding
the Leader as well as adding and removing nodes.

Remember bugs will happen! Be sure whatever system you build can easily backup
its data set -- in our initial example, the KV store. Backup often, and backup the entire
Raft log if you feel like it. It depends on your implementation.

https://www.philipotoole.com

Monitoring your Raft-based System

Philip O’Toole
https://www.philipotoole.com

Hashicorp Raft is
most sensitive to
disk performance

Node start-up times
Raft Snapshot times

You should monitor all the usual suspects -- CPU, RAM, and disk. But disk is
particularly important -- that is the first bottleneck you’ll hit when pushing your system
to the limit.

It’s also particularly important to monitor node start-up times, and Raft snapshot
times.

Of course, monitor the nodes themselves -- Hashicorp Raft has status reporting
available on the Raft module, so you should expose this via HTTP (or whatever
protocol makes sense for you). Make liberal use of the expvar module too.

https://www.philipotoole.com

Should I choose Raft?

Philip O’Toole
https://www.philipotoole.com

Latency Control plane
vs. Data plane

Scaling vertically vs
scaling horizontally

There are some final other considerations you need to take into account when
building with the Hashicorp library -- and Raft systems in general. Perhaps you’re
even wondering if Raft is the right approach for your project? One way to make this
decision is to look at the potential costs and downsides of using Raft.

The first thing is latency. If you think about, your writes are bouncing between nodes
until consensus is reached. This introduces latency. So you can expect your write
performance to change. Batching can help a lot, but this latency is unavoidable.

Another choice you might want to make when building your system is whether you
build a data-plane system, or a control plane system. I’ve just shown you a data plane
system. Maybe if you just require config data in consensus you can use Raft.

Horizontal scaling vs vertical scaling - if you need a system that
scales writes horizontally, Raft may not be you, not if you want to
put your write traffic through Raft.

Will you nodes come and go? Do you care?

- Not necessarily a drop in – not without more work
Practical cluster sizes - odd, not even.hics on the right

https://www.philipotoole.com

● Clusters are most practical when 3, 5, or 7 nodes in size. Even numbers don’t
get you anything.

● A 3-node cluster has a quorum of 2, which means it can tolerate loss of a
single node.

● A 4-node cluster has quorum of 3, which it too can only tolerate loss of a single
node. You must go to a 5-node cluster to tolerate loss of 2 nodes.

● rqlite has been a successful example of software composition - modern
distributed consensus system meets modern database. Neither SQLite nor
Hashicorp’s Raft implementation had to change.

Summary

Philip O’Toole
https://www.philipotoole.com

● We examined the core challenge of Distributed Systems –
and how Raft helps

● Dived into the integration of Raft with 3 different data
storage systems, using the Hashicorp Raft module

● Gained some practical insights for developing and testing
your own Distributed System

https://www.philipotoole.com

Thank you
www.philipotoole.com/gophercon2023

Philip O’Toole
https://www.philipotoole.com

Visit these web pages for more information:
● https://raft.github.io
● http://thesecretlivesofdata.com/raft/
● https://github.com/hashicorp/raft
● https://github.com/otoolep/hraftd
● https://github.com/rqlite
● https://rqlite.io/docs/design/
● https://github.com/boltdb/bolt
● https://github.com/mattn/go-sqlite3

https://www.philipotoole.com/gophercon2023
https://www.philipotoole.com
https://raft.github.io
http://thesecretlivesofdata.com/raft/
https://github.com/hashicorp/raft
https://github.com/otoolep/hraftd
https://github.com/rqlite
https://rqlite.io/docs/design/
https://github.com/boltdb/bolt
https://github.com/mattn/go-sqlite3

