
www.philipotoole.com
     @general_order24

Observing
Observability

Monitorama Baltimore 2019
Philip O’Toole

         www.philipotoole.com
                @general_order24

Hello everyone, and welcome to Observing Observability. My name is Philip O’Toole, 
and I’m going to share my journey, as a developer and manager, through various 
companies that have built Observability systems. I’ve watched the tools -- and 
development teams -- evolve over time, and picked up a few lesson, along the way 
that I’d like to share. I hope you’ll be able to apply these lessons to your own 
development team, tool choices, and Observability practices.



www.philipotoole.com
     @general_order24

*The following are my opinions, not my employer’s!

*

A little about me. I manage two software development teams within GCP -- specifically 
Stackdriver. Stackdriver is GCP’s Observability platform, which allows GCP users to 
monitor and observe the systems and software they, in turn, run on GCP.

One other thing before we get going. What you’ll hear today are my opinions. My 
opinions are based on my education, my training, and my experience. Different 
people have different experiences, so they’ll have different opinions. I don’t make any 
claims that what I say comes down from heaven, and these are my views, not my 
employer’s. Now, with that out of the way….



www.philipotoole.com
     @general_order24

Takeaways
Why Observability systems struggle

Why they are hard to build

This is a talk of twos.
● There are two main takeaways
● And there are two parts to my talk -- the journey and the lessons.



www.philipotoole.com
     @general_order24

The 
Journey

Come with me on a short journey from Zero Observability to Observability at 
planet-scale. It all starts back in 2011.



www.philipotoole.com
     @general_order24

2011

We know nothing

It’s 2011, and I run a development team for a fast-growing networking firm in San 
Francisco, called Riverbed Technology. It’s an advanced company for the time, but it’s 
got some characteristics many of us wouldn’t even recognise today. It’s got:

● An in-house, super-protective IT department. And who can blame them? They 
work for a publicly-traded company.

● A Microsoft Exchange Server, closely guarded and nursed, sitting in a locked 
room.

● Development teams, who throw software over the wall, unprepared to build 
software for anything but networking switches.

But times they are a-changing, and my team needs to build a new licensing server in 
the cloud for our customers. So we build a Django web-based application and deploy 
it to AWS. It’s a single VM, with a single RDS instance. The IT department -- not my 
team -- guards it closely, protects it, treating it like a special snowflake server. 

And the night before Thanksgiving 2011, while I’m having dinner with my in-laws to 
be, the licensing server goes dark.



www.philipotoole.com
     @general_order24

Licensing Portal goes 
dark...

...and it’s 24 hours until all 
customer appliances go 
unlicensed.

https://www.pinterest.com/pin/478859372862314902/

I get a call from IT. They don’t know what to do, and I don’t know how to debug it. 
I need the logs, but they are on the VM’s disk. I can’t get at them, and IT won’t give 
me access. We’re a public company, and we don’t allow development engineers onto 
machines that contain customer data (SOX). And now I see it. The logs shouldn’t be 
on a VM, on the other side of a network I couldn’t access. What are we doing to 
do?

This was never an issue with networking appliances. With those you can walk up 
to them -- or the customer does -- plug in your serial cable, and read what’s going on. 

So what did we do? We did voice-based log analysis -- in other words, I had the IT 
staff read me the logs lines over the phone, while my Thanksgiving dinner went cold. 
It was Zero Observability. And it sucked.



www.philipotoole.com
     @general_order24

2012

Something is wrong

Now it’s a year later -- 2012 -- and it’s clear to me that the operational -- and 
observability tools -- are already falling short when it comes to the next 
generation of computer systems. 

So it’s inspired to me to join Loggy, a cloud-based log analytics system. The idea 
was clear! Get the log data off the machines, make it searchable, and those 
problems I experienced at Riverbed are gone. Separate the signals from the 
systems! Access the logs from anywhere! It was genius. And there really is nothing 
like trying to solve a problem you viscerally appreciate.



www.philipotoole.com
     @general_order24

Big pipelines and 
big indexers

● Lots of logs
● ...even more logs
● Nothing but logs
● ...and cardinality

At Loggly we built a groundbreaking system for real time log indexing and 
search. I think it’s fair to say that you can see the influence in many of today’s 
systems. As far as I know we were the first team to put Apache Kafka in front of 
Elasticsearch. And to build a product out of it.

But we made many mistakes. Because we were a Log Analytics company, we 
basically never used time-series to monitor our production systems. We used 
logs for everything, and nothing but logs. Of course, log data is key -- it’s one of the 
two, maybe three, pillars of Observability systems. But logs -- in their basic form -- 
don’t show you trends. They can tell you what happened, but don’t tell you what the 
trend is -- and certainly not if something was close to breaking. Not without more 
processing anyway. Time series does that for you.

So now I had gone from Zero Observability to Partial Observability. It was better, 
but outages still sucked. And I mean really sucked. But another interesting thing 
was happening. The tools we did use for monitoring -- Nagios, logs, basic 
alerting, were struggling to tell us what was happening with our large scale, 
clustered, distributed system. I was developing a cutting-edge observability system, 
but the tools were struggling to monitor this generation of computer systems. 
Noticeably the dimensions on which our data pipelines and clusters needed to 
be monitored was large and getting much larger -- the nodes, the shards, the 
indexes, the customer accounts, the queries. This was something which was more 
significant than I realised at the time.



www.philipotoole.com
     @general_order24

2014

Something is still wrong

 So it’s 2014. I had seen what had happened when you try to monitor large computer 
systems without the full picture. While a partial picture was better than none, it 
was still pretty bad.



www.philipotoole.com
     @general_order24

Measure everything

Measure it in every dimension

I knew where I needed to go next

From Loggly I went to a short-lived company, named Jut. Jut had a vision, and 
wanted to build an Observability system that supported both logs and metrics, 
via a single tech stack and unified query language (more on this later). After the 
logs-only experience at Loggly it was appealing, but the company didn’t survive. 
However, what Jut really did was introduce me to the power of time-series data.

And since I was now a time-series believer, after Jut I joined the core development 
team at InfluxDB.

At InfluxDB I helped build an great time series database, and we built it in Go. 
Suddenly one could measure everything! And I noticed something interesting. 
InfluxDB was designed specifically to measure systems with very large numbers 
of dimensions -- what I now knew to call cardinality. 



www.philipotoole.com
     @general_order24

Observability 
Challenges

● It’s hard for the tools to 
keep pace

● Observability systems are 
often driving the pace

And then I realised it.

Every generation of monitoring system was being built such that it could monitor the 
previous generation of computer system, but often not the current generation. 
Logs solved Riverbed’s IT problems, but only Loggly solved Riverbed’s Cloud 
observability problems. Next InfluxDB would have solved Loggly’s monitoring 
problems, with its superb support for high cardinality time-series measurement.

And as Observability systems themselves get more complex -- they become highly 
available, replicated, clustered, distributed -- they are one of the key forces driving 
creation of even more sophisticated computer infrastructure such as containers and 
Kubernetes. 

And systems such as Kubernetes are, in turn, driving creation of even more 
sophisticated observability and monitoring systems!

Observability systems are often first solving the previous generation’s 
Observability systems monitoring challenges!



www.philipotoole.com
     @general_order24

And now I’m at GCP. At Google we make great use of both logs and time series, 
SLO-targets are an integral part of design, and alerting is core. 
We’re not perfect, but I feel like I’ve gone from zero observability at Riverbed to 
planet-scale observability at Google. 



www.philipotoole.com
     @general_order24

The 
Lessons

Anyway, that was the journey.

Next let’s talk about the lessons I’ve learned along the way, and how they might 
apply to your teams, tools, and technical choices.



www.philipotoole.com
     @general_order24

1

Lesson #1



www.philipotoole.com
     @general_order24

Logs and       
time series are 
different

This one may be seem obvious, but I’ve been involved with a number of attempts to 
build a single system that handles both well. Sometimes even I’ve wondered if logs 
and time series are just different sides of the same event. But in every single 
Observability company I’ve worked, which has tried to unify these data types in 
an efficient and high-performance manner, underneath the covers there has 
always been two distinct storage technologies.

That is why there is a wizard up there, with a line through him. There is no magic 
spell.



www.philipotoole.com
     @general_order24

Logs and time series are different

● Log data is much richer

● Tolerance for log data loss   

is very low

● Log downsampling is not    

simple

● Time series is simpler

● Time series is tolerant of 

data loss

● Downsampling is natural

● Compression works great!

What is it about log data, and time series, that is so different? Log data is usually 
much richer, often requiring full-text search support. This gets you into inverted 
indexes, rich query languages, and large data storage overheads. And the 
tolerance for data loss is very low - a single log message could be critical to 
understanding what has happened to a system. Compare this with time series data -- 
you can lose some data, and probably still do fine. Time series data can be 
downsampled too, but I’ve never encountered a compelling -- or at least simple -- 
case for samping logs. And with techniques such as delta encoding, time series can 
also be compressed very effectively, without any loss of information.

Time series are pointers, but logs tell you what happened.

Now this doesn’t mean a SaaS can’t be built that does a great job working with both 
types of data. But if someone tells you their database supports both cases really well, 
be very sceptical.



www.philipotoole.com
     @general_order24

2

Lesson #2



www.philipotoole.com
     @general_order24

Everyone thinks a 
new query 
language is the 
solution.

Out of the 5 companies mentioned in my story, 4 of them have seriously 
considered creating their own query language. 3 of them actually have, but only 
1 has gained any traction -- and that’s flux from InfluxData.

So you should know that the set of query languages is much, much larger than the 
set of query languages that have had any success. SQL -- and SQL-like -- still 
dominate the market place. And one of the key reasons for InfluxDB’s early 
success was its SQL-like query language.

Now this is not to say that your query language isn’t the solution to your 
monitoring challenges -- there are definitely custom query languages inside Google, 
with a particular one for time series data. But SQL-like languages dominate. And 
developing your own query language is huge investment -- I saw this at Jut -- and 
it can distract from solving other, more pressing issues. And oiften these query 
languages promise a unified interface for interrogating both logs and time series, 
but because those two data sources as so different, the language design has to 
make sacrifices that limit its coherence or simplicity. 

So, like systems that promise superior performance for both logs and data, be wary of 
systems that advocate that their query language is their special sauce.



www.philipotoole.com
     @general_order24

3

Lesson #3



www.philipotoole.com
     @general_order24

The nature of 
the innovation

I think there is a popular image out there, that small software startups are a 
hotbed of technical innovation -- that they are producing amazing technical 
wonders everyday. This is definitely the perception of the general public. And 
obviously to certain extent it’s true -- there are many innovative companies 
represented here today.

But startups are disproportionately innovating when it comes to business 
models and productizing existing technology. Academic-level technical innovation 
is primarily happening at large firms.

Throughout most of my small company experience, we took large chunks of 
technology developed at larger firms and repurposed them for our uses. At 
Loggly we used Kafka, which came out of LinkedIn. At InfluxData, core elements of 
TSM storage engine is based upon the Gorilla storage engine which came out of 
the Facebook. One notable exception has been Elasticsearch, which originated 
with a startup. But Elasticsearch has Apache Lucene at its core, which was developed 
elsewhere by Doug Cutting. But at all these small companies were were 
laser-focused on gaining customers, and how we could tweak our business 
models and onboarding practises to win those customers -- and keep them.

So I don’t think the image of a startup triggering groundbreaking technical 
breakthroughs is quite as common as one might think.

What’s the lesson? I think it’s when evaluating a new, small player’s Observability 



offering, understand what it’s built on. If it’s brand new software from end-to-end, I 
would say it’s less likely to be successful -- and actually do what it says -- than a 
company that is combining pre-existing technology in innovative new ways, and 
combining it with a new type of business model.



www.philipotoole.com
     @general_order24

4

Lesson #4



www.philipotoole.com
     @general_order24

It’s a 
crowded 
market

Let’s look at the next observation.

Engineers want to solve the problems they understand best. The story I shared 
earlier shows this in action. And the tools and systems built in Observability are 
often the best in the business, especially from a computer science point-of-view. 

But, boy, is the market crowded. Look at the state of Marketing software by contrast. 
Some of biggest software companies in world are in the advertising and 
marketing space, and yet much marketing software is not in as strong a place 
technically. Believe I know, I once spent two years building it. Yet there are many, 
Observability vendors, making technically amazing software, all of which is doing 
the same thing. Why?

Too many software developers build what they know, but maybe they shouldn’t.

The crowded market has other effects too -- some obvious, some more subtle. The 
obvious one is captured by one of the most famous xkcd cartoons ever -- there are 
so many standards.

The more subtle one is the effect a crowded market has on the Observability 
development teams themselves. The teams within such organisations are 
fragmented, sharded, multiplied -- as they have to deal with the ever-growing 
challenges of OS-support, client library support, language support, data 
collection protocols, data models, query dialects, and so on. The crowded, 



fractured market seeps in, as though by osmosis, into the development teams. The 
requirement to work for everyone, everyone, is daunting.

But there is a lesson here too. If you’re going to build a successful Observability 
product, differentiation is key.



www.philipotoole.com
     @general_order24

5

Lesson #5



www.philipotoole.com
     @general_order24

The product 
development 
challenge

Building effective Observability systems presents a daunting computer science 
challenge. Let’s think about why.



www.philipotoole.com
     @general_order24

The Product Development Challenge

● Data at very large scale

● Highly heterogeneous data

● Unrelenting demand for low-latency

● And no one wants to pay for it

● The data is usually at very large scale, since it’s almost always machines 
that are emitting it. That’s challenge #1.

● In many cases the data is highly heterogeneous -- both structured and 
unstructured data must be supported well. Sometimes binary data too. 
Challenge #2

● There is an unrelenting demand for low-latency systems -- both at ingest 
time and at query time. We know how to build systems today that will offer 
either high-performance ingest, followed by querying some longer time later. 
Or the systems will offer fast queries, but will require preprocessing the 
received data first (or perhaps handle relatively little data) -- introducing ingest 
latency. But Observability systems must try to address both requirements 
simultaneously. This is challenge #3 -- performance is demanded at both 
ends of the system.

● And finally, challenge #4: no one wants to pay for it. Doesn’t everyone 
complain about Splunk in this dimension?

There are other non-technical challenges too. As engineers in this industry we’re 
building tools that are often -- if not mostly -- used by people in a bad emotional 
state at the time. I often feel this leaks into our development and Product 
Management teams, much like the pernicious effects of the crowded market.

What’s the lesson?

I think we, as an industry, still need to do a better job communicating the value of 



our work, and the systems we build -- that’s my challenge to all of you.

The contrast with Computer Security has become clear Sometime during the last 5 
years, Security made the leap from being perceived as a cost center to now a 
highly valuable partner. It’s probably the high-profile data breaches that have 
occurred in that time, and geopolitical implications of such failures.

The question is this: does that mean we’re going to need a high-profile systems 
failure, with geopolitical implications, before people are happy to pay for 
Observability systems?



www.philipotoole.com
     @general_order24

Takeaways

And that’s it! Let me remind you of the takeaways.



www.philipotoole.com
     @general_order24

Why Observability systems struggle

● They can’t keep up with the generation 
infrastructure changes

Why they are hard to build

● The main data pillars are so different
● Query languages only get you so far
● Crowded market
● It’s CS-hard and no one wants to pay



www.philipotoole.com
     @general_order24

Thank you!
Links

http://www.philipotoole.com/2019-monitorama

Acknowledgements

Nathen Harvey & Marie Cosgrove-Davies

But let me finish with this. Building these systems is amazing work, technically 
challenge, and central to what has become the industry of the last 50 years. So 
let’s keep doing it, and doing it well.

http://www.philipotoole.com/2019-monitorama

